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M E D I A  W I T H  E Q U A T I O N S  O F  S T A T E  

T H A T  D E P E N D  O N  D E R I V A T I V E S  

S. L. Gavri lyuk and S. M. Shugrin UDC 532.5 

1. I n t r o d u c t i o n .  S. K. Godunov [1] introduced a wide class of quasilinear equations of the form 

a (oL-  
Ox c ' \ O q f l ]  = 0  ( a = O , . . . , n ,  f i =  l , . . . , m ) ,  L '~= L ~  (1.1) 

Here and below summation is carried out over repeated indices. 
This class of equations possesses the following remarkable features: first, it admits the additional 

conservation law 
O~ ~ r q# OL~ 
Ox a = O, = --Oq# - L~ (1.2) 

second, system (1.1) is symmetric,  i.e., is written as 

A,~ Oq "r c, 02Let (1.3) 
&r cgxC ' = O, A'fl7 = A'rfl - Oq~Oq'l" 

The converse s tatement  is also true. If a system of m conservation laws admits the additional 
conservation law, it is written as (1.1). Examples of the systems of equations of the form (1.1)-(1.3) can be 
found in [1-7]. This class of equations is appropriate for describing quasilinear hyperbolic equations modeling 
wave propagation in continua. Conservation law (1.2) is the energy (or entropy) conservation law for the 
media. A natural desire arises to extend this class so that  it could be used to describe nonlinear waves in 
media with dispersion. 

By a system with dispersion is meant  a system of nonlinear equations having the form of exact 
conservation laws, i.e., written in the form 

0 
= 0 ( 4  = # = 1 , . . . , m ) ,  

where the functions qo~ depend on a finite number of derivatives with respect to independent variables (below 

we consider only the case where q~ depends on qfl and their first derivatives) and having exact laws for energy 
and entropy conservation, if the notion of entropy makes sense in the system. 

In this work this class is described in terms of variational derivatives, and numerous examples of 
mathematical  models falling within this class are presented. In addition, the peculiarities of the media for which 
the equation of state depends on derivatives are analyzed. It appears that  the most important  thermodynamic 
relationships for them are also formulated in terms of variational derivatives. 

2. S y s t e m s  w i t h  D i s p e r s i o n .  Let us introduce the independent variables (x ~) (4 = 0 , . . . , n ) ,  
dependent  variables qfl (fl = 1 , . . . , m ) ,  derivatives qr = Oqfl/Ox "r, q~8 = 02qfl/OxTOx6, and functions 

L'~(q ~, qr We denote the variational derivative of L a as 

6qfl -- Oqfl Ox7 ~Oq~ J" 
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Def in i t ion .  The system of equations of the form 

O z  ~ \6q~ ] = o (2.1) 

is called a generalization of Godunov's system. 
The following statement is true. 
T h e o r e m .  System (2.1) admits the conservation law 

0~*' ~,~ ~ ,fL ~ _ LO , /3 OL v 
cOxa = O, - -  q 6q~ + q7 - ~ "  (2.2) 

P r o o f .  Differentiating (2.2), we obtain 

Ox ~ -- qTx ~q~ q -~x~ ~, ~q~ J - "~q~ qS, - "~'~'~ q.~a + q-f,X-~q~ + \ Oq~ ] Oq-r 

~ f O L  '~ 0 0 L * " X  OL ~" OL ~' ~ ~ OU r R 0 OL v _  OUr ~ OLV [3 

The theorem is proved. 
In a similar way one can construct the conservation law (2.2), if L a depends on second- and higher-order 

derivatives. 
3. E x a m p l e s .  We further put x ~ = t, x 1 = x. 
(1) Generalized Korteweg-de Vries Equation [8, 9]: 

,,, + f ( u ) ~  + ~,=x = o (3.1) 

Let Lo = u2/2, L ~ = f f ( z ) d z  - u2/2. Then (3.1) is equivalent to the equation 

= o  
t x 

(2) Generalized Regularized Boussinesq Equation [8-10]: 

vt t  - v=, - ( f ( v )  ).= - vtt== = O. (3.2) 

We write (3.2) as the system of equations 

= + = 0, 

L ~ = uv, L 1 v2 v2 
IL 2 

= 2 2 J f ( z ) d z  2 

(3) Transverse Oscillations of Mass Points Suspended on a Weightless Unstrained Thread (long-wave 
approximation) [11]. In dimensionless variables the equation of motion is as follows: 

2 

(~ is a small parameter).  Equation (3.3) is rewritten as the system 

& 
vt -- u~ = O, ut + px = 0 ,  P =  5v' e =  4 

Thus, one should set 

L ~ = uv, L 1 = - - u 2 / 2  -- e ( v ,  v z ) ,  

and hence (3.4) is equivalent to the system 

6u ] t + \ - ~ u J  ~ = O, 

(3.3) 

v4 e2 2 2 (3.4) 
8 v Vx" 

6v } t  + \ ,Sv ,]~ =0 .  
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(4) Model of the Slug Flow Regime of a Gas-Liquid Mixture in the Neighborhood of a Thermodynamic 
Critical Point (long-wave approximation) [12]. Equations of this model have the form (3.4). 

(5) Shallow Water Equations in the Boussinesq Approximation [8]: 

h, + (hu)z = O, u, + uu,  + ghz + c~hohzzz/3 = 0. (3.5) 

Here t is the time, z is the Eulerian coordinate, h is the liquid depth, h0 is the undisturbed depth, g is 
the acceleration of gravity; q~ = gho. Let us introduce the mass Lagrangian coordinate = from the relation 
Oz/Ox = h -1. Since 

hz = =Oz = 

the divergent form of the derivative is as follows: 

hz = (h2/2)=, hzzz = h(h(h2/2)zz)z = hhz(h2/2)~:= + h2(h2/2)=z= 

= (h2/2)z(h2/2)x~ + (h2(h2/2)=~)= - (h2)z(h2/2)z= 

= (h2(h2/2)=,), - (1/4)(h2),=(h2)z = {hZ(h2/2), ,  - (1 /8)((h2)=)2}z .  

After the passage to the Lagrangian variables Eqs. (3.5) become 

~- u==O, ut + - -  + ---~-- h 2 =0. (3.5') , -  T = -  ((~2)~)2 
X 

Introducing the variable v - 1/h, we have 

2 ( . = . - 3 . ~ )  
(h~)~= 2.~ ( ~ ) = - 2 ( " ~ )  

. 3  ' z V 4 

; . ( h ~  _ �89 . . . , , -  3.~ 
~,TJ,, - :J 

whence 

Consequently, Eqs. (3.5 I) become 

" t  - -  Uz = O, 

Introduce the function 

Then 

2 5._2 " x  "x~c 

2v 6 = ---~-  + 2v 6" 

{ g h04 "=]} =0. (3.5") 

g hoco 2.2 
e(v,v=) = 2v 6 v s. 

[ 5e g 5hoc o v~ 
- ~ = -  -~-vz~2+--T-.6 +o=\ 5 V 

g 5hoco~.~ ho4.~  5h0c0~.~] g 5ho4v~ 
~ ~ V 6  ~ ~ 3 .6 j=o~ + ,  ~-:z ~ .6 

Thus, gqs. (3.5") are written a s  follows [121: 

ho c2 .zx 
3 . 5  " 

~ g ~~176 (3.5"') v t - u ~ = 0 ,  ut+p~=O, P=--~v' e - 2 v  6 .5" 

(6) Granular Media (One-Dimensional Chains). In the case of propagation of nonlinear waves in discrete 
one-dimensional media with the interaction of particles according to the generalized Hertz law, the following 
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Vt - -  Uz = O, 

Then we have 

equation [13] in the long-wave approximation arises: 

w. = - c  ( -~ ) "  + 6(,-, + I--~ (-"~ x' 

where a is the distance between the particles; w is the displacement from equilibrium; c,  is a parameter  having 
dimension of velocity; n > 1 is the exponent of nonlinearity in the generalized Hertz law ( F  ,,, 6 n, where F is 
the force of interaction between the particles and 6 is the approach of the particles). Reasoning from physical 
considerations, we consider only solutions with w~ < 0. 

Let us change the variables wt - u,  wz  - v. Then (3.6) is equivalent to the system 

ut-l-p~:0, p=c (-v)"-{- 6(n-~(--v)T (--v)'~ . 

We now take 

P = Cn ( _ v )  n na 2.  . n- I  n- I  

ha2 n , "l 
+ - 

2 A ( _ v ) ~ - l v 2  
e(v, vx) = c .  L ~-~i + 

Define the constant A in such a way that  

P = -  Ov Oz 

2 { - ( - v ) "  A ( n  1) ( -v)" -2v  2 0 ( 2 A ( - v ) " - l v x ) }  p ----= --C n -- -- _ _  

= c~ { ( - v )  ~ - A(~  - 1 ) ( - v " - ~ ) , ~  + 2 A ( - ~ ? - % ~ } .  

Comparing this expression with the one obtained earlier, we find that  A = - n a 2 / 2 4 .  

Thus, system (3.6) is also written as 

v t - u ~ = O ,  u t + p ~ = O ,  P = - E '  2 4 ( - v ) " - ' v  . (3.6') 

It should be noted that  when n = 3 system (3.6') coincides with (3.4). 
(7) Van der W a a l s - K o r t e w e g  T h e o r y  o f  Capil lari ty  [14-16]. Investigation of liquid-gas isothermic phase 

transitions yields the system 

6e 7 cv2 R T  a 
(3.7) J vt - ux = 0 ,  ut  + pz = 0 ,  P - -  6v '  e = - p o ( w ) d w  + --~-, po(v)  - v - b v 2 

where x is the mass Lagrangian coordinate, v is the specific volume of the mixture, u is the velocity of the 
mixture, R is the gas constant, T is the temperature,  and a, b, and c are positive constants. 

We note that  systems (3.4), (3.5"), (3.6'), and (3.7) are distinguished only by different functions e(v ,  v~) 

and are reminiscent of the equations of gasdynamics in the mass Lagrangian coordinates. The difference is 
that  the pressure p here depends not only on the specific volume v, but also on the derivatives v~ and vxx. 
For the systems of equations of this type the most natural is the problem on the structure of traveling waves 
rather than the problem of the decay of an arbitrary discontinuity. In [12] the problem of the stability of 
periodic traveling waves for an arbitrary function e(v, v~) is studied. (Periodic waves are stable or unstable 
depending on whether the appropriate system of modulation equations is of hyperbolic or mixed type. The 
stability of periodic waves in a particular case is also studied in [17].) 
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(8) B u b b l y  L iquid .  The equations of a bubbly liquid were derived independently by different authors 
[18-20]. The  one-dimensional equations of motion disregarding the dissipation, mass exchange, fragmentation 
of bubbles, surface tension, and compressibility of the carrier phase are of the form 

1 ~ R  3 ( d R ~  ~ • 
e, + (pu) .  = o, u, + , ~ , .  + - p .  = 0,. R + = (p~(R) - p), N,  + ( u N ) .  = 0. (3.8) 

p dt 2 2 \ dt ] p~ 

Here z .is the Eulerian coordinate; d / d t  = O/Ot + uO/Oz; p = azpt + agpg is the density of the mixture (the 
subscripts I and g stand for liquid and gas respectively); at and % ( a i + a g  = 1) are the volume concentrations 
of the liquid and the gas, respectively; p is the pressure in the mixture, R is the averaged radius of bubbles; 
pg(R)  is the pressure inside a gas bubble; N is the number of bubbles per unit volume of the mixture. The 
volume concentration ag and the density pg are defined by the formulas 

3rag 
ag = 7r R3 N,  pg - 4~rR3, 

where rng = const is the mass of the gas inside a bubble. 
It was shown [21] that  if the mass Lagrangian coordinate x is introduced, Eqs. (3.8) become 

5e(v' vt) /0e 0 0e ] 
~, - u~ = 0, u, + p~ = 0, P = ~---4-- - . 0~  N N , J '  (3.8') 

1 4 3 N 
e(v ,  vt) = eg(V) - 2~rnptR3I~,  v - - -  + 5orR n, n - - const, deg(v)  + p g ( R ) d v  = O. 

Pt p 

In [21] the modulat ion equations for system (3.8') are constructed for an arbitrary function e(v, vt). 
A particular case of the system of modulation equations is obtained in [22] where the oscillations of bubbles 
near the resonance are considered. In [23] the effects of dissipation arc taken into account when deriving the 
modulation equations. 

4. M e d i a  W h o s e  E q u a t i o n s  of S t a t e  D e p e n d  on  Vp.  Let us consider the governing equations of 
a medium whose specific internal energy e is a function of density, density gradient, and entropy. 

Mechan icM S y s t e m .  Let us first consider the case of a mechanical system where e depends only on p 
and on Vp [a multi-dimensional analog of system (3.4)]. Since e is a Galilean invariant, we have 

e = e(e ,  I ve l2 ) ,  IV;]  2 - ~ IOp/Ozil 2. 

i 

The equations of such a medium are constructed in [15, 16, 24] (see also references therein). In this 
paper the derivation of equations is given to provide a complete presentation, and also to distinguish the 
role of variational derivatives in determining the effective pressure P [see below (4.6)] and to emphasize some 
other important  aspects. 

In what follows, the Latin indices take on the values 1 , . . . ,  n, and x = (x i) E R =. For the derivatives 
we also used the notat ion qot - Oqo/Ot, ~k -- O~/Ox  k. 

Let the Lagrangian coordinates of the particles be ~(t, x) = (~a), ~ = O~a/Ox k. The matrix that  is 
the inverse of the matrix ((~) is denoted by (xa k) so that 

k b b k ~ 5~, (4.1) x~,~ k = 5~, z ,~ i  = 

where 5~ is the Kronecker symbol. After differentiation with respect to ~ and multiplication by zi, it follows 
from (4.1) that  

Oz" m 

Since (~) are the Lagrangian coordinates, 
0~ ~ vk 0~ ~ 
0-5-+ ~ = 0 ,  

(4.2) 
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-which, in view of (4.2), yields the equalities 

Denote 

v i ' ". (4.3) 

Ovk ~ i (4.4) 
= - - X a t ~  . 

~. Oe O(pe) 1 0r (4.5) 
P -  P = P Op - 2 - O l v p l  2 

To derive the equations, we apply a variational principle (see also [25]). We take the functional 

t o R n 

Here ~o(t, x) is the Lagrangian multiplier corresponding to the introduction of the law of conservation of mass 
as a constraint. Since the divergent summand does not influence the form of the Euler equations, J '  can be 
replaced by a functional that  is more convenient for calculations: 

t l  

t 0 R n 

Computation of Variational Derivatives. We define 

~ . Denote Ea = 6L/6~ ~ and calculate Ej = (j E~. 

dT _ cgqa vk O~o 
dt - cgt + cgz ~" 

P = P -  P-~xi PA'~xi = P @ 

 o0(0L  .. 0 /0L  0_@0L  0 ( o0L_L jk)_R; ' 

R 

Taking into account (4.3) and (4.4), we find 

~a O L  . . O L  

Invariance and the Law of Conservation of Momentum. The functional d is invariant with respect to 
spatial translations, i.e., the groups of transformations Gj with the operator O/oxJ [26]. According to the 
Noether theorem this leads to the divergence of the expression 

JJ =_ %ojE~ + piEp + ~E~ =_- ~ojE~ + pjEp + Ej. 

Gathering the relations obtained earlier we find 

0 j �9 p~pO_;z k Op JJ = -~(PV ) + J~-fi{ pv'vk + L$jk + OxJ }" 

lnvariance and the Law of Energy Conservation. The functional J is invariant with respect to time 
shifts, i.e., the group Go with the operator O/at. Following the Noether theorem this results in the divergence 
of the expression 

E = -~otE~ - prEp - ~ E a .  

After calculations we obtain 

0 .Op Op 
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Final System.  The Euler equations have the form E~ = 0, E o = 0, and 
j i  = 0 and E = 0. The  equation Ep = 0 gives the relation 

L = P .  

Taking into account Eq. (4.7), we arrive at the system of equations 

E~ = 0. Hence, it follows that 

M = - ~  + (pv k) = 0; 

�9 (9 J O@(Pv%k + W k) O; 
(gp (gp 

Hjk _ p~jk + p)~ (gxJ (gx k; 

(9 

Equation (4.11) is the consequence of (4.6) and (4.8)-(4.10). The important  equality 

E = (h - v2/2)M + vJJ j 

is valid, where 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

h - ~(pe)/6p. (4.13) 

Relations (4.12) and (4.13) have a characteristic property: they coincide in form with the appropriate 
relations for a barotropic liquid when the ordinary derivative (9(pe)/(gp is replaced by a variational one [cf. 
also (4.5) and (4.6)] 

Taking into Account  Heat. Let a local state of the physical system in question be described by the set 
of variables p, Vp, s, v = (v k) (s is the specific entropy) and the equation of state ~ = e(p, IVpl 2,s) be 

p = (gp - p-~'~xj~pa-~xi) = p Pe. 

w = ( w  - (o,  p , , . . . ,  

given. We assume that  

(9(p~) ~ (9~ (9~ 
p ~ p 2  : P - -  - -  P~, __ _ _  (gp (gp 2 (9[Vp]2, T -  (gs' 

Let us introduce the Galilean vectors 

y = ( y  = (1, , )  = (1, , ' , . . . ,  , " ) ,  

where pj =_- Op/Ox j. Then we need a general form of the divergent Galilean scalar, i.e., the expression 

X_-- 0"--dx Y ", x ~  

where Ya are assumed to depend only on p, s, V, and W and X is a Galilean invariant or scalar. Following 
[271 

Y = A V  + B W  + const. (4.14) 

Here A and B depend only on p, [Vp] 2, and s. 
Now the problem is reduced to the search for a stationary (extremum) point of the functional 

t l  

t o R n 

with imposed constraints. As the constraints we take the law of mass conservation (4.8) and the law of entropy 
conservation. The latter should be, first, an exact conservation law (cf. definition of the system with dispersion 
in Section 1), i.e., should have the form (gYa/Oxa = O, and, second, the left-hand side of the equality should 
be a Galilean scalar. Since we consider the systems whose local state is characterized by the set (p, Vp, s, 
v), y a  is assumed to depend only on these variables. Hence, (4.14) holds. Finally, according to its physical 
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,.f=_ 

If ~ = r s) = r (ps)/p), then 

sense, the law of entropy conservation should be written as O(ps)/Ot + 0(. . .)k/Ox k = 0, whence A = ps. We 
finally take 

~---~(ps) + o-~(psvk  + p( ~---~Px~ ) = O , (4.15) 

where ( = ((p, IVpl 2, s). Assume first that ( = 0. In this case, we obtain equations having the form of Eqs. 
(4.8)-(4.11), where e = e(p, [Up[ 2, s), which are supplemented by the equation 

0 
s ; N(e s )  + o. (4.16) 

One of Eqs. (4.8)-(4.11), (4.16) is the consequence of the others. This follows from the equality similar 
to (4.12): 

~ - ) M  v2 + v im  + TS; E = ( \ 7  - (4.17) 

6(Pr I = e + P i p  - Ts.  (4.18) 
6p I(p~) 

= 7 -  Op (ps) ~ + p / p -  Ts'  (4.19) 

i.e., 7 is the specific Gibbs potential. Thus, (4.18) is a natural generalization of the specific Gibbs potential 
(4.19) for the class of systems under consideration. The equality 

6(pr (4.20) P = P  6p (ps) 5(ps) P 

is valid, which is apparently nothing but a variational analog of the Legendre transform. The symbol of the 
type 6(p~)/5(ps)[p means that when the variational derivative is calculated the variable p remains invariant. 
In this case, 

6(p~) = a~ ~ )  P 
6(pS) p os = T' 6p (p~) = 7 = ~ + --p - Ts.  

It seems likely that transformation (4.20) is reversible to a certain reasonable degree, although this 
question still remains to be solved. The fundamental equality (4.17) can also be written as 

v 2 TvJ3 j 1 s (4.21) 

whence it is evident that 1/T is the integrating multiplier in the energy conservation law as in the classical 
mechanics of continua. 

Equation (4.21) is properly one of the most exact and general expressions of the second principle 
of thermodynamics (excluding what is involved in the notions of irreversibility). Let us take the classical 
differential Gibbs form 

de = Tds - pd(1/p), (4.22) 

where ~ = r s). 
It is equivalent to the differential form 

V=O(p~)IOp[(#,) =e+plp-Ts, T=a(p~)la(Ps)l #. 

(4.23) 
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In the context of the equations of classical gas dynamics Eqs. (4.22), (4.23), and (4.17) are equivalent. 
Therefore, each of them is an original representation of the second principle of thermodynamics.  But (4.17) 
is in some respects a more general expression than (4.23) since it makes sense and for nonclassical media can 
also be used in determining analogs of the Gibbs potential 7 and the temperature T. To distinguish more 
clearly the far reaching structural relationship of the classical and new variational formulas, we introduce the 
variational thermodynamic  form 

5(pc) = 75p + TS(ps), (4.24) 

which is given the following natural meaning: by definition it is equivalent to the relations 

6(pr T = 6(p~) 3' = 6p (ps)' 6(ps) p" 

The structure of expressions (4.23) and (4.24) is identical. 
Thus, the fundamental  relations of classical continuum mechanics and thermodynamics are extended 

to the class of media with dispersion with the ordinary derivative replaced by the variational derivative. 
General Note. Generally speaking, the equation of state of the type ~ = c(p, ]Vpl 2, s) can be obtained 

in two ways. 
First, it can be obtained by means of appropriate averaging of the initial system with high-frequency 

oscillations (fluctuations). In this case T = 8~/Os may not have a direct meaning of physical temperature.  
But it is its complete analog, so that  l IT is the integrating multiplier of E in (4.21). This analogy is useful in 
studying media with nonconvex equations of state where phase transitions or other peculiarities can occur, in 
constructing dissipative systems, and in extending the Onsager relations to systems with dispersion (see [27, 
28]). 

Second, one can reason from generalization of a simple classical situation in which the local state of the 
physical system in question was originally characterized by the set of variables p, s, v = (v k) and was given 
by the equation of state e = e0(p, s), with T = 8eo/Ss having the meaning of physical temperature.  If this 
description turned out to be inadequate in one or another relation, one can try to extend the initial set of 
variables determining the state of the system at the point (t, x) by introducing additionally some variables, 
for example, Vp, and simultaneously generalizing the equation of state, i.e., specifying it as e = e(p, Vp, s) (in 
effect this is precisely often the case). In this case the unique correct definition for temperature is T = 8e/8s, 
which restricts the choice of possible equations of state. 

If the derivatives 8s/Sx are introduced into the local set of variables governing the state of the system, 
one should pass to the variational derivative when calculating temperature in terms of (pc). In all cases the 
quantity that  is the reverse of the temperature should be an integrating multiplier of E in the expression of 
the type (4.21). 

General Case. Let < ~ 0. We take the functional 

.'- } I + (.-, },.., 
t 0 R n 

allowing for the constraint (4.15). After calculations we obtain the system of equations 

'p 0 ( ) 
0-7 + ~ pvk = o; (4.25) 

8--7 p'j + p,j,k + (p + G)6jk + n~ ~ + G jk = 0, 

8< _cO< ~O (P<r + 2P o[-~p[2P'P'r } ' (4.26) c = p l ~ p k C k  - 

=-- + 2 p ~ p j p k p i ~ b i ;  
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ff-~(ps) + ~-~(psvk + p( ff-~Pzk ) = O; (4.27) 

de O~ Op 0r -T .  (4.28) 
d'-t + Os Oz k Oz ~: = 

The law of energy conservation for system (4.25)-(4.28) is as follows: 

v 2 v 2 

- -  - -  - -  2 ~ p k P i ~ b i j  = 0.  ( 4 . 2 9 )  

Equations (4.25)-(4.29) are complicated. But in some cases they are considerably simplified. For 
example, if ( depends only on p, we have 

G =-pr p~-~[zi , dt -T .  

The case C ~ # 0 is considered to demonstrate that in systems with dispersion more general expressions 
similar to (4.15) are possible along with the traditional conservation laws of the form (4.16). In some cases 
they can probably have physicM meaning and describe new physical phenomena. 

5. M e d i a  w i t h  E q u a t i o n s  of S t a t e  D e p e n d i n g  on p. Let us now consider a medium for which 
the set of variables governing the state of the system is as follows: p,/~ - dp/dt, s, v = (vk). We take the 
functional 

t l  

t o R n 

where e = e(p, P, s). As a constraint we take here the energy and entropy conservation laws. 
After calculations we obtain the system 

Op O(pv k) 
M -= ~--/+ Ox k 

0 j 
a i =-- ~(pv ) + o~(ev ' v  k 

- -  - 0 ;  

+ P6 ik) = O; 

s = p - Pl t-N-] + vk ; 

20e O(pe) _ pc; 
P-- P "~p = P O p 

s =_ -~(p~) + (p~v k) = o. 

The law of energy conservation follows from the above equations 

0 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

�9 Oe ~ - ~ - p ~ .  (5.7) 

Expression (5,7) is a modification of the Legendre transform. We pass from the set of variables 
(P, t~, s; e(p, P, s)) to the set (p, cr, s; e(p, a, s)), where ~r --- - 0 e / 0 b  assuming that the last equation is uniquely 
solvable so that the transformation (p,b,s) -+ (p,~r,s) is one-to-one. The relations characteristic of the 
Legendre transforms 

_~(p, 0e as 0e 0e 
~,~) = ~(p,h,~), NO, o, ~) = NO, h,~), ~ = -~O,h,~), 
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�9 Oe 0 e  0 s  
= e - p ~  = ~ + p~, ~ = ~ ( p ,  ~, s), ~ = ~ - ~ = ~ - ~p. 

are valid. In particular, if e = eo(p, s) - #(p, s)(/~)2/2, then a = #/~ and e = e0(p, s) + cr2/2#. 
Expression (5.3) can be written as 

P = p6(pe) pe, e = e(p,~,s) .  (5.8) 
6p 

Thus, system (5.1)-(5.6) has the structure of the classical equations of gasdynamics with the ordinary 
derivative O/Op replaced by a variational one in defining the pressure P.  Relation (5.8) is a variational analog 
of the Legendre transform. The following relations similar to (4.17) and (4.18) are also true: 

v 2 

E = ( 7  - -~M] + vJJ j + TS; 
\ 

7 = 5(pe) (ps) P 
6--7 = e + --p - Ts ,  

In calculating 7 in (5.10) (pa) is considered as 
~(p, ~, (p~)/p).  

The equality analogous to (4.20) 

T =  

(5.9) 

Oe _ O~ 6(pe) (5.10) 
Os Os 5(ps) p" 

a function of the variables p,/~, and ps, i.e., e = 

5(pe) + (ps) -- pe (5.11) 
P = P 6p (ps) 6(ps) p 

holds true. 
The coincidence of the fundamental relations (4.17), (4.18) and (5.9), (5.10), (4.20), and (5.11) cannot 

be occasional. This reveals the general fundamental  structure of correctly constructed equations for media 
with dispersion, which allows one to extend the most important  notions of the classical thermodynamics 
(temperature,  Gibbs's potential, etc.) to media with equations of state depending on derivatives, to generalize 
to them the theory of phase transitions for nonconvex equations of state, and to construct correctly dissipative 
structures (see also [27-29]). 

Mechanical System. If e depends only on p and ~, this yields the system of equations (5.1)-(5.3), (5.6). 
The equations for the second-order approximation of the long-wave theory were constructed in [30] without 
using the hypothesis on the smallness of the wave amplitude. In the case of a horizontal bot tom and ignoring 
the bot tom friction for a flow in the plan [x = (x 1, x2)] they have the form 

oh 
O--t § (hV  k) = 0; (5.12) 

O (hW) + f--fi(pVJV k + p6Sk) = O, 
h 2 

P - g 7  + ~; (5.13) 

~ 3 (5.14) (hW) + ( h w v  k) = ~ ;  

OV k 2 
o~ k + ~ w = o. (5.15) 

Here h(t, x) is the flow depth; V(t ,  x) = (V  1, V 2) are the components of the mean velocity in the z 1 and 
z2-directions, respectively; W is the mean vertical velocity: 

1 h 
W = ~ f w(t,  z,  z)dz; 

0 
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.the value a" characterizes the deviation of pressure from the hydrostatic law. The energy conservation law 

1 h ]W 2 f f - - ' ~ { h ( ~ + ~ ) } +  o ~ { h V k ( e + ~ ) + V k P } = O ,  s - - ~ g  + (5.16) 

follows from (5.12)-(5.15). 
System (5.12)-(5.15) is a set of five equations for five unknown quantities: h, V 1, V 2, W, and 7r. We 

transform the system. From (5.12) and (5.15) we find 

w = ~ ,  ~= ~ g h + - - -  
Finally we obtain 

1 (~,)2 1/~. 
3 2 '  ~r=~ 

o-7 + h V  k = 0; (5.17) 

O (hVi) + o~(hViVk + P6 i') = O; (5.18) 

i 2 

The unknown quantities in (5.17) and (5.18) are h and V. Equations (5.17)-(5.19) with the energy 
conservation law (5.16) coincide with (5.1)-(5.3) and (5.6) respectively up to notation. 

We also note that system (5.12)-(5.15) is written in the canonical form (1.1), i.e., the following [30] 
holds: 

o (OL~) =F~, 4=0,1,2, Z=0,1,. 4, 
Ox ~ \ Oq~ ) ""  

2 4W, q4 L o _ p, L k =_ p v  k, qO _ gh - W 2 V~ qX ~ V a, q2 _ V 2 qa = = ~r. 
2 '  ' 3 ' 

(5.20) 

The vector F = (F~) on the right-hand side of system (5.20) is independent of derivatives and depends 
only on the unknown functions as which one can take (q#) 

3 (0 
The form (5.20) enables us to write the rule of substitution of boundary conditions for the system 

(5.12)-(5.15) (see [7]). 
The authors are thankful to H. Gouin for providing papers on the theory of capillarity. 
This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-01210-a). 
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